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Abstract

Limit analysis has been rendered versatile in many structural and metal forming problems[ In metal
forming analysis\ the slip!line method and the upper bound method have _lled the role of limit analysis[ As
a breakthrough of the previous work\ a computational approach to limit solutions is considered as the most
challenging area[

In the present work\ a general algorithm for limit solutions of plastic ~ow is developed with the use of
_nite element limit analysis[ The algorithm deals with a generalized Ho�lder inequality\ a duality theorem\
and combined smoothing and successive approximation in addition to a general procedure for _nite element
analysis[ The algorithm is robust such that from any initial trial solution\ the _rst iteration falls into a convex
set which contains the exact solution"s# of the problem[ The idea of the algorithm for limit solutions is
extended from rigid:perfectly plastic materials to work!hardening materials by the nature of the limit
formulation\ which is also robust with numerically stable convergence and highly e.cient computing time[
Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Limit analysis is known as the asymptotic approach in plasticity[ Although the early theory of
limit analysis was developed in an ad hoc manner\ the current state of limit analysis has been able
to be established on the deeper physical and mathematical foundation "Hill\ 0849^ Drucker et al[\
0841^ Charnes et al[\ 0848# than previously attempted "Drucker\ 0843#[ A concise architecture of
limit analysis is now emerged with new physical interpretation\ rigorous mathematical formulation
and e.cient computational methodology "Anderheggen and Kno�pfel\ 0861^ Maier et al[\ 0866^
Dang Hung\ 0865^ Strang et al[\ 0867^ Christiansen\ 0879^ Temam and Strang\ 0879^ Yang\ 0870^
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Gao\ 0880^ Huh and Yang\ 0880#[ As a consequence\ computational approach to limit analysis is
often regarded as _nite element limit analysis[ With the aid of the _nite element limit analysis\ a
new attempt to obtain the plastic ~ow _eld and the corresponding forming load in various metal
forming processes becomes possible as a substitution for the slip!line method or the upper bound
method which has been carried out by intuitions inspired from deep theoretical backgrounds and
insights on the mechanics "Prager and Hodge\ 0840^ Johnson and Kudo\ 0851^ Kachanov\ 0860^
Avitzur\ 0857^ Osakada and Niimi\ 0864#[ Numerical limit analysis is still being forti_ed in its
theory and application by many researchers "Zouain et al[ 0882^ Liu et al[\ 0884^ Muralidhar et
al[\ 0885#[ The systematic approach is robust such that from any initial trial solution\ the _rst
iteration falls into a convex set which contains the exact solution"s# of the problem[ Accordingly\
it always converges to the exact solution from any arbitrary initial guess\ and makes it possible to
obtain the solutions of very complicated problems without a prior conjecture[

Besides the conventional concept of limit analysis\ the idea of the algorithm for limit solutions
can be extended from rigid:perfectly plastic materials to work!hardening materials[ The present
_nite element limit analysis can be applied to the problem of plastic deformation for work!
hardening materials by replacing the initial yield stress with the current ~ow stress[ This idea is of
no di}erence from that of the incremental analysis except it always guarantees numerically stable
convergence and highly e.cient computing time because there is no need to compute the elasto!
plastic tangent modulus[

In this paper\ the framework in the _nite element limit analysis is described as a mechanics
problem\ interpreting a model of asymptotic behavior of materials\ stating a variational principle
of duality\ and developing a computational algorithm[ Although the concept applies to general
limit problems\ examples and discussions pertain only to the class of plane strain problems and
axisymmetric problems[ Numerical examples of the plane strain problems are compared with the
slip!line solutions\ and those of the axisymmetric problems deal with the work!hardening materials
as a real metal forming process[

1[ Limit analysis theory

1[0[ Primal formulation

The primal formulation can be derived from the statically admissible set "S# and the constitutively
admissible set "C#[ The statically admissible set includes the equilibrium equation 9 = s � 9 in the
domain D and the static boundary condition s = n � t on the part of the boundary 1Ds\ where a
given traction vector t is prescribed[ The constitutively admissible set can be the yield condition
with the implicit normality condition[ A limit analysis problem seeks an extreme point in S K C\
that maximizes the applied load in its proportional form\ q = t\ where q is a positive\ real scaling
factor[ The constrained maximization of the objective functional q"s# in the form\

maximize q"s#

subject to 9 = s � 9 in D

s = n � q = t on 1Ds
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>s>v ¾ s9 in D "0#

de_nes the primal formulation of a general limit analysis problem[ The problem "0# is a convex
programming in the function space R2×2"D#\ which seeks the maximum q"s#\ while the magnitude
of stress s is bounded by the yield condition in the form of a convex norm[ It is also called the
lower bound formulation in plasticity and L � S K C is called the lower bound solution set since
every point in L corresponds to a value of q either lower than or equal to the maximum value q�
sought[

1[1 Dual formulation

The convex programming problem has a dual problem whose minimum solution is equal to q�[
To construct the dual problem of "0#\ it is started from the weak equilibrium equation\ introducing
an arbitrary velocity function u which is included in the kinematically admissible set "K#[ After a
generalized divergence theorem and the normalization of the boundary integral "Huh and Yang\
0880# an intermediate formulation can be obtained as follows]

maximize q"s\ u#

subject to q � ÐDs] o dV in D

Ð1Ds
t = u dG � 0 on 1Ds

>s>"v# ¾ s9 in D

kinematic boundary conditions on 1Dk "1#

The term s ] o can be restated by a generalized Ho�lder inequality "Yang\ 0880^ Huh and Yang\
0880# as

s] o � =s] o= ¾ >s>"v#>o>"−v# "2#

where the "−v# norm is called the dual norm of the "v# norm which could be the von Mises norm
or anyone else[ When the von Mises norm is applied\ the two norms in the right hand side of "2#
can be expressed as

>s>"v# � z
0
1
ð"s0−s1#1¦"s1−s2#1¦"s2−s0#1Ł � s¹

>o>"−v# � z
1
8
ð"o0−o1#1¦"o1−o2#1¦"o2−o0#1Ł � o¹ "3#

The above two norm expressions of three dimensions are distinguished from each other by the
subscripts "v# and "−v#\ since the value of stress is di}erent from that of strain[ For explanation\
the norm expressions in the case of the plane stress state become

>s>"v# � zs1
0−s0s1¦s1

1

>o>"−v# � z
3
2
ðo1

0¦o0o1¦o1
1Ł "4#
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which are also valid for the plane strain state[ The inequality "2# means that equality holds when
o is chosen to be proportional to the gradient of the yield function[ This sharpness condition

o � k9>s>"v# "5#

is the well!known normality condition "Drucker 0848# in plasticity\ where k is a proportional
factor[ Consequently\ a sharp upper bound to the functional q"s# can be established as

q"s# � ÐDs] o dV ¾ ÐD>s>"v#>o>"−v# dV ¾ s9ÐD>o>"−v# dV � q½ "u# "6#

where the upper bound functional q½ "u# depends only on the kinematically admissible function
u $ K[ The correct choice of K still needs to be studied in the thorough research of functional
analysis and calculus of variation[ Based on the inequalities in "6# and the existence of the absolute
minimum of q½ "u#\ we may state the dual formulation as

minimize q½ "u#

subject to q½ "u# � s9ÐD>o>"−v# dV in D

Ð1Ds
t = u dG � 0 on 1Ds

TrðoŁ � 9

kinematic boundary conditions on 1Dk "7#

where TrðoŁ � 9 is the incompressibility condition[ While K is constructed with all kinematically
admissible velocity _elds\ the exact solution is in the smallest function space whose elements satisfy
the constraints in "7# and produce the absolute minimum of the objective functional[ When the
absolute minimum of q½ "u# is attained\ the duality relation

max
s$L

q"s# � q� � min
u$K

q½ "u# "8#

can be realized to hold[ In real problems\ general solutions of "7# could be obtained with the
numerical method[ In this paper\ the upper bound functional is _rst discretized into _nite elements\
then a combined smoothing and successive approximation algorithm "Huh and Yang\ 0880# is
used to solve the _nite dimensional minimization problem[

2[ Finite dimensional approximation and a minimization technique

The dual formulation is discretized with the aid of a _nite element method and reduced into a
convex programming problem in a _nite dimensional space Rn where n is the total number of the
discrete variables[ The integral representing the upper bound functional q½ "u# and the incom!
pressibility condition in "7# is then approximated by a sum

q½ "u# ¼ s
E

e�0

ðzUTAe
0U¦zUTAe

1UŁ � s
E

e�0

zUTAeU "09#

where U is the discrete vector representation of the velocity _eld u\ T transposes a vector\ Ae
0 is the

element sti}ness matrix\ Ae
1 is the matrix of large numbers to impose incompressibility of materials\
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and the integer E is the total number of elements[ The scalar product UTAeU in each term of the
sum is interpreted as a product formed in Rn where U $ Rn is the global velocity vector and Ae is
embedded in an n×n null matrix[

Similarly\ the normalization equation Ð1Ds
t = u dG � 0 in "7# is approximated by CT = U � 0 where

C $ Rn is a constant vector[ The _nite dimensional approximation of "7# takes the form

minimize q½ "U#

subject to q½ "U# � s
E

e�0

zUTAeU

CT = U � 0 "00#

where the parameters s9 as well as the static and kinematic boundary conditions and the incom!
pressibility condition are absorbed into the matrices Ae and the vector C[ It can be easily shown
that each Ae is positive de_nite or semi!de_nite and zUTAeU is a convex function in Rn[ Since the
sum of convex functions is convex\ q½ "U# is convex and has a unique minimum value[

One last obstacle is still in the path of a numerical solution of "00#[ Some matrices Ae are only
positive semi!de_nite such that the product UTAeU may vanish for some non!trivial vectors U\
which may cause serious problems in the minimization procedure[ To overcome this di.culty\ the
objective function is slightly perturbed with a small real number d as a smoothing parameter such
that

q½ "U\ d# � s
E

e�0

zUTAeU¦d1 "01#

which is di}erentiable everywhere for d � 9 and remains convex[ The perturbed function recovers
its original value as d : 9[

The constrained minimization problem "00# is converted\ using a Lagrange multiplier l\ to an
unconstrained one with the perturbed objective function in "01# such that

minimize F"U# � q½ "U\ d#−l"CT = U−0# "02#

The minimum solution satis_es the conditions ð"1F"U##: 1UiŁ � 9\ i � 0\ 1\ [ [ [ \ n[ It leads to the
problem of solving a system of equations such that

AUd � lC "03#

in matrix notation\ where the global sti}ness matrix

A � s
E

e�0

Ae

zUTAeU¦d1
"04#

is regarded as a constant matrix in each iteration and is updated from iteration to iteration with
the vector U obtained in the previous iteration[ The above problem is treated in each iteration as
a linear system to be solved repeatedly with an inner and an outer iterative sequence[

A solution of the problem may be symbolically expressed as
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Ud � lA−0C "05#

where l can be evaluated by the condition CT = U � 0 to obtain

l �
0

CTA−0C
"06#

The outer iteration is associated with a decreasing sequence of d[ At each _xed value of d\ an
inner iteration begins with a previously obtained vector U as its initial vector[ The solution of "03#
in each inner iteration is used in a feedback loop to update A and l[ The converged solution q½ "U\ d#
and Ud under a suitable stopping criterion terminates an inner iteration loop[ Then\ d is reduced
for the outer iteration to start another inner iteration[ During the inner and outer iterations\ an
initial vector U"9# is assumed only in the _rst inner iteration[ From any initial vector U"9#\ the
subsequent iterations are locked in a certain convex hull de_ned by the data of the discrete problem
"00#[ Thus\ in reality\ only a few values of d are needed to extrapolate to the limit\ d : 9[

3[ Numerical examples

The developed algorithm was demonstrated for its validity and versatility with various plane
stress problems in the early work by Huh and Yang "0880#[ In this section\ the algorithm is to be
demonstrated with several plastic ~ow problems in the plane strain case and the axisymmetric
case[ The _nite dimensional approximation has been carried out by a _nite element method
with the three!node linear triangular element or the four!node bilinear quadrilateral element[
Nevertheless the choice of the type of _nite elements may depend on the nature of a problem\ the
linear element was rendered satisfactory in present applications[

3[0[ Plane strain indentation by a ~at punch

The _rst application of the present methodology must be a test of its ability to reproduce a
known result[ The plane indentation problem is selected as the bench mark for comparison since
it is one of the typical problems solved by the slip!line method "Prager and Hodge\ 0840^ Kachanov\
0860#[ Any solution of an indentation problem is immediately applicable\ with only a change in
sign\ to the tension of a notched bar superposing a uniform velocity to bring one end of the bar to
have a uniform velocity[ The estimated yield!point load for a plane semi!in_nite medium indented
by a smooth ~at die is P � 1ka"1a¦p# where 1a is the width of the die[ Since the load was obtained
from a lower bound formulation in terms of stress\ it is a lower bound solution[ A calculated dual
solution for the yield!point load with the present algorithm is P � 2[995131\ which is obtained
after 19 iterations as a total sum of inner and outer iterations[ The two upper and lower bound
solutions show the deviation of less than 0[2)\ which can be satisfactory when it is counted in
that the numerical calculation approximates a semi!in_nite medium as a _nite medium with rough
_nite element meshes and allows continuity in a velocity _eld[ A velocity _eld obtained for this
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Fig[ 0[ Plastic ~ow in the indentation of a plane semi!in_nite medium by a ~at punch[

problem is shown in Fig[ 0 with a schematic slip!line _eld[ Figure 0 demonstrates the obtained
velocity _eld is almost the same as the velocity _eld by the slip!line method except the former is
continuous[ It is a strong veri_cation of the dual variational principle and the algorithm[

The present algorithm is readily applied to the constrained indentation problem which is an
open problem with the slip!line method[ The calculated yield!point load is P � 2[282501 after 19
iterations[ This load is slightly larger than the upper bound solution P � 1ka ð1¦p¦"b:z1a#Ł
obtained with the velocity _eld drawn in Fig[ 1[ The deviation of two solutions is less than 9[4)
though[ Figure 1 shows the calculated velocity _eld and a schematic kinematically admissible
velocity _eld[ There seems a region with rigid body motion under the constrained boundary[ It
follows that the direct application of this velocity _eld to construct a slip!line _eld still needs a
thorough study[ The velocity _eld itself\ however\ provides good information for construction of
a possible slip!line _eld[

Figure 2 shows the velocity _elds in backward extrusion with the large and small extrusion
ratios\ respectively\ as a modi_ed problem of the indentation problem[ The velocity _elds explain
that the plastic ~ow spreads over the entire region with the small extrusion ratio while the plastic
~ow is restricted within a part of the region with the large extrusion ratio[ This tendency becomes
obvious when the depth of a medium becomes larger than the domain in calculation\ which is in
good agreement with the result in Johnson and Kudo "0851#[
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Fig[ 1[ Plastic ~ow in the constrained indentation of a plane semi!in_nite medium by a ~at punch[

3[1[ Plane strain extrusion throu`h a square die

The plane strain extrusion problem through a square die has been studied in great detail with
the slip!line method "Hill\ 0849^ Johnson and Kudo\ 0851# and the upper bound method "Avitzur\
0857^ Osakada and Niimi\ 0864#[ The velocity _eld associated with the deformation region and
the dead metal region has been assumed in various ways and compared with the experimental
data[ This procedure needed intuitive techniques inspired from deep theoretical backgrounds and
insights on the mechanics and mathematics[ The present algorithm\ on the other hand\ o}ers the
velocity _eld under the constraints of the minimum dual functional and the smallest kinematically
admissible function space without any prior conjecture[ The calculated extrusion load is plotted
with the variation of the extrusion ratio in Fig[ 3\ and compared with the slip!line solutions[ The
_gure shows there is a narrow gap between the slip!line solutions and the calculated ones[ The gap
will be de_nitely narrower as the number of _nite elements and iterations is increased[

Figure 4 shows the velocity _elds for the extrusion ratio of 9[14\ 9[4 and 9[64[ The _gures indicate
that the dead!metal region is formed with the small extrusion ratio and reduced with the larger
extrusion ratio[ The _gures also show there is only slight di}erence between the calculated velocity
_elds and the slip!line _elds considering that the former allows a continuous velocity _eld[ With
the extrusion ratio of 9[64\ there observed di}erence to some extent between the two velocity _elds[
As a matter of fact\ two slip!line solutions exist in this case\ one with the dead!metal region and
the other without the dead!metal region[ The obtained velocity _eld is an intermixture one and
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Fig[ 2[ Plastic ~ow in the backward extrusion with] "a# small extrusion ratio "reduction in area � 3:04#^ "b# large
extrusion ratio "reduction in area � 3:4#[
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Fig[ 3[ Extrusion loads in the plane strain extrusion through a smooth square die with the variation of reduction area[

rather closer to the one without the dead metal region[ This result is in good agreement with the
experimental result by Johnson and Kudo "0851#[

3[2[ Axisymmetric extrusion with work!hardenin` materials

In the previous two sections\ the validity and versatility of the present algorithm is fully
demonstrated by comparing the obtained result with the analytical and experimental result[ To
apply the present algorithm to real metal forming processes\ however\ the present methodology
has to be furnished with the treatment of friction between dies and materials\ and the work!
hardening behavior of materials[ The objective function in the dual formulation "7# can be restated
as

q½ "u# � s9ÐD>o>"−v# dV¦mkÐ1Df
=us = dG "07#

by including the term related to the frictional dissipation with the constant friction factor m[ As a
matter of fact\ this objective function "07# can be derived from the weak equilibrium equation by
applying the proper boundary condition without any di.culties[ In the above objective function\
the yield stress s9 and the yield shear stress k can be replaced by current yield stresses as

s9 � s¹ � F"Wp# or H"o¹# "08#

Then\ the formulation can deal with not only the problem of a medium with di}erent materials
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Fig[ 4[ Plastic ~ow in the plane strain extrusion through a smooth square die with the related schematic slip!line _eld]
"a# reduction in area � 9[14^ "b# reduction in area � 9[4^ "c# reduction in area � 9[64[
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Fig[ 5[ Schematic diagram for the e}ective stressÐstrain relation with discrete tracking of the current yield stress[

but the problem of a work!hardening medium as the aggregate of elements with di}erent ~ow
stresses[ The current yield stress can be obtained from a typical and simple stressÐstrain relation

s¹ � a¦bo¹n or s¹ � c"a¦bo¹#n "19#

where a\ b\ and c are constants for a given material[ The problem can be solved incrementally step
by step by replacing the yield stress with the current yield stress at each step\ as shown in Fig[ 5[
In order to guarantee the current yield stress representative of each element at each step\ the limit
solution procedure has to deal with another iteration to update the current yield stress until the
residual becomes zero[

The above idea from the conventional limit analyses makes it possible to simulate any three!
dimensional metal forming process with work!hardening materials[ As an example\ the present
algorithm is applied to an axisymmetric extrusion problem with a work!hardening material[ The
analysis provides the extrusion load\ and distributions of the e}ective strain rate and e}ective
strain from the velocity _eld at each deformation stage[ In this paper\ only a part of the results is
to be presented[ A thorough study of this problem has been done by Huh and Lee "0882#[ Figure
6 shows the increase of the extrusion load with the advance of a ram as a material is work!hardened
with deformation[ The calculated load concerns only the deformation load with die friction
neglecting the friction between a material and a container[ This result is in good agreement with
the result by Lee et al[ "0866#[ Plastic ~ow through a conical die in an extrusion process is depicted
in Fig[ 7"a# and "b# for the initial state and the steady state[ Although the di}erence in plastic ~ow
between two _gures is hard to distinguish\ the di}erence in the deformation region is easily
distinguished[ Figure 8 illustrates the variation of the deformation region as the deformation
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Fig[ 6[ Variation of the extrusion load for various die friction in the axisymmetric extrusion through a conical die with
the die angle of 29>[

proceeds[ It is noted that the deformation region moves backwards gradually during the defor!
mation until the steady state is reached[ That is because the material near the outlet is work!
hardened more and more than the material near the inlet and the resistance against the deformation
increases[

4[ Conclusions

A general algorithm for plastic ~ow analysis has been developed and successfully tested for
plane strain problems and axisymmetric problems[ The algorithm can be readily applied to three!
dimensional problems with work!hardening materials[ The algorithm is built on sound physical\
mathematical\ and computational foundations[ The duality theorem helps discern the direction
and rate of convergence when an iterative approach is applied to either the primal or the dual
formulation[ The combined smoothing and successive approximation method homes in robustly
on a correct optimum solution[

The numerical examples con_rm the validity and versatility of the present algorithm with the
results which are acceptable at a modest cost[ Especially\ the load and the velocity _eld for the
constrained indentation problem which is an open problem with the slip!line methods are obtained
without any prior conjecture as a demonstration of substitution for the slip!line method[ An
axisymmetric extrusion problem with a work!hardening material is also analyzed with the idea
extended from the convectional limit analysis[ The result of the extrusion load and the distribution
of the e}ective strain rate obtained from the corresponding velocity _eld is reasonable and in good
agreement with those in literature "Lee et al[\ 0866#[
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Fig[ 7[ Plastic ~ow in the axisymmetric extrusion through a conical die with the die angle of 29>] "a# the initial state^ "b#
the steady state[

Fig[ 8[ Distributions of the equivalent strain rate in the axisymmetric extrusion through a conical die with the die angle
of 29> for the initial state and the steady state[
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