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Abstract

Limit analysis has been rendered versatile in many structural and metal forming problems. In metal
forming analysis, the slip-line method and the upper bound method have filled the role of limit analysis. As
a breakthrough of the previous work, a computational approach to limit solutions is considered as the most
challenging area.

In the present work, a general algorithm for limit solutions of plastic flow is developed with the use of
finite element limit analysis. The algorithm deals with a generalized Holder inequality, a duality theorem,
and combined smoothing and successive approximation in addition to a general procedure for finite element
analysis. The algorithm is robust such that from any initial trial solution, the first iteration falls into a convex
set which contains the exact solution(s) of the problem. The idea of the algorithm for limit solutions is
extended from rigid/perfectly plastic materials to work-hardening materials by the nature of the limit
formulation, which is also robust with numerically stable convergence and highly efficient computing time.
© 1998 Elsevier Science Ltd. All rights reserved.

1. Introduction

Limit analysis is known as the asymptotic approach in plasticity. Although the early theory of
limit analysis was developed in an ad hoc manner, the current state of limit analysis has been able
to be established on the deeper physical and mathematical foundation (Hill, 1950; Drucker et al.,
1952; Charnes et al., 1959) than previously attempted (Drucker, 1954). A concise architecture of
limit analysis is now emerged with new physical interpretation, rigorous mathematical formulation
and efficient computational methodology (Anderheggen and Kndpfel, 1972; Maier et al., 1977,
Dang Hung, 1976; Strang et al., 1978; Christiansen, 1980; Temam and Strang, 1980; Yang, 1981;
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Gao, 1991; Huh and Yang, 1991). As a consequence, computational approach to limit analysis is
often regarded as finite element limit analysis. With the aid of the finite element limit analysis, a
new attempt to obtain the plastic flow field and the corresponding forming load in various metal
forming processes becomes possible as a substitution for the slip-line method or the upper bound
method which has been carried out by intuitions inspired from deep theoretical backgrounds and
insights on the mechanics (Prager and Hodge, 1951; Johnson and Kudo, 1962; Kachanov, 1971;
Avitzur, 1968; Osakada and Niimi, 1975). Numerical limit analysis is still being fortified in its
theory and application by many researchers (Zouain et al. 1993; Liu et al., 1995; Muralidhar et
al., 1996). The systematic approach is robust such that from any initial trial solution, the first
iteration falls into a convex set which contains the exact solution(s) of the problem. Accordingly,
it always converges to the exact solution from any arbitrary initial guess, and makes it possible to
obtain the solutions of very complicated problems without a prior conjecture.

Besides the conventional concept of limit analysis, the idea of the algorithm for limit solutions
can be extended from rigid/perfectly plastic materials to work-hardening materials. The present
finite element limit analysis can be applied to the problem of plastic deformation for work-
hardening materials by replacing the initial yield stress with the current flow stress. This idea is of
no difference from that of the incremental analysis except it always guarantees numerically stable
convergence and highly efficient computing time because there is no need to compute the elasto-
plastic tangent modulus.

In this paper, the framework in the finite element limit analysis is described as a mechanics
problem, interpreting a model of asymptotic behavior of materials, stating a variational principle
of duality, and developing a computational algorithm. Although the concept applies to general
limit problems, examples and discussions pertain only to the class of plane strain problems and
axisymmetric problems. Numerical examples of the plane strain problems are compared with the
slip-line solutions, and those of the axisymmetric problems deal with the work-hardening materials
as a real metal forming process.

2. Limit analysis theory
2.1. Primal formulation

The primal formulation can be derived from the statically admissible set (S) and the constitutively
admissible set (C). The statically admissible set includes the equilibrium equation V+6 = 0 in the
domain D and the static boundary condition ¢ *n =t on the part of the boundary dD,, where a
given traction vector t is prescribed. The constitutively admissible set can be the yield condition
with the implicit normality condition. A limit analysis problem seeks an extreme point in S () C,
that maximizes the applied load in its proportional form, ¢-t, where ¢ is a positive, real scaling
factor. The constrained maximization of the objective functional g(e) in the form,

maximize ¢g(o)
subjecttoV*e =0 in D
e'n=¢g-t ondD,
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loll. < oo inD ()

defines the primal formulation of a general limit analysis problem. The problem (1) is a convex
programming in the function space R***(D), which seeks the maximum ¢(s), while the magnitude
of stress ¢ is bounded by the yield condition in the form of a convex norm. It is also called the
lower bound formulation in plasticity and L = S (") C is called the lower bound solution set since
every point in L corresponds to a value of ¢ either lower than or equal to the maximum value g*
sought.

2.2 Dual formulation

The convex programming problem has a dual problem whose minimum solution is equal to g*.
To construct the dual problem of (1), it is started from the weak equilibrium equation, introducing
an arbitrary velocity function u which is included in the kinematically admissible set (K). After a
generalized divergence theorem and the normalization of the boundary integral (Huh and Yang,
1991) an intermediate formulation can be obtained as follows:

maximize ¢g(a,u)
subject to ¢ = [,6:6dQ in D
[optrudl’ =1 ondD,
”G”(v) <o, inD
kinematic boundary conditions on 0D, 2)

The term o6:¢& can be restated by a generalized Holder inequality (Yang, 1991; Huh and Yang,
1991) as

o:e=lo:g| < [o]llef - 3)

where the (—v) norm is called the dual norm of the (v) norm which could be the von Mises norm
or anyone else. When the von Mises norm is applied, the two norms in the right hand side of (3)
can be expressed as

ol = \/%[(0'1 —0,)*+(0,—05)’+(0;—0,)’] = ¢
lell o = /2lE1—22)? + (e —e3)> + (65 —1)2] = & (4)

The above two norm expressions of three dimensions are distinguished from each other by the
subscripts (v) and (—v), since the value of stress is different from that of strain. For explanation,
the norm expressions in the case of the plane stress state become

l6]w =+/0i—010,+03
H*‘:”(fv) =V 3[5%4‘3132 +5§] ®)
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which are also valid for the plane strain state. The inequality (3) means that equality holds when
¢ is chosen to be proportional to the gradient of the yield function. This sharpness condition

&= KVHO'H@) (6)

is the well-known normality condition (Drucker 1959) in plasticity, where k is a proportional
factor. Consequently, a sharp upper bound to the functional g(e) can be established as

q(o) = juo'i £dQ < jIDHO-H(v)”SH(fr) dQ < O-OleH‘g”(fv) dQ = g(u) (7

where the upper bound functional §(u) depends only on the kinematically admissible function
uc K. The correct choice of K still needs to be studied in the thorough research of functional
analysis and calculus of variation. Based on the inequalities in (7) and the existence of the absolute
minimum of §(u), we may state the dual formulation as

minimize §(u)
subject to g(u) = a,f,lel ., dQ inD
j(th ‘ud' =1 ondD,
Trie] =0
kinematic boundary conditions on 0D, ®)
where Tr[e] = 0 is the incompressibility condition. While K is constructed with all kinematically
admissible velocity fields, the exact solution is in the smallest function space whose elements satisfy

the constraints in (8) and produce the absolute minimum of the objective functional. When the
absolute minimum of §(u) is attained, the duality relation

max ¢(6) = ¢* = min g(u) )

can be realized to hold. In real problems, general solutions of (8) could be obtained with the
numerical method. In this paper, the upper bound functional is first discretized into finite elements,
then a combined smoothing and successive approximation algorithm (Huh and Yang, 1991) is
used to solve the finite dimensional minimization problem.

3. Finite dimensional approximation and a minimization technique

The dual formulation is discretized with the aid of a finite element method and reduced into a
convex programming problem in a finite dimensional space R" where 7 is the total number of the
discrete variables. The integral representing the upper bound functional g(u) and the incom-
pressibility condition in (8) is then approximated by a sum

E

g ~ Y [JUTASU+,/UTASU] = i,/UTAeU (10)

e=

where U is the discrete vector representation of the velocity field u, 7 transposes a vector, A is the
element stiffness matrix, A% is the matrix of large numbers to impose incompressibility of materials,
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and the integer E is the total number of elements. The scalar product U"AU in each term of the
sum is interpreted as a product formed in R" where Ue R" is the global velocity vector and A° is
embedded in an n x n null matrix.

Similarly, the normalization equation [, t*udI’ = 1 in (8) is approximated by C"+ U = 1 where
Ce R"is a constant vector. The finite dimensional approximation of (8) takes the form

minimize §(U)

E
subject to g(U) = Y, \/U"AU

e=1
C’U=1 (11)

where the parameters g, as well as the static and kinematic boundary conditions and the incom-
pressibility condition are absorbed into the matrices A° and the vector C. It can be easily shown
that each A“ is positive definite or semi-definite and . /U”A“U is a convex function in R". Since the
sum of convex functions is convex, §(U) is convex and has a unique minimum value.

One last obstacle is still in the path of a numerical solution of (11). Some matrices A¢ are only
positive semi-definite such that the product U’A°U may vanish for some non-trivial vectors U,
which may cause serious problems in the minimization procedure. To overcome this difficulty, the
objective function is slightly perturbed with a small real number § as a smoothing parameter such
that

E

g(U,0) = ) JU'4U+4’ (12)

e=1

which is differentiable everywhere for 6 # 0 and remains convex. The perturbed function recovers
its original value as 6 — 0.

The constrained minimization problem (11) is converted, using a Lagrange multiplier 4, to an
unconstrained one with the perturbed objective function in (12) such that

minimize ®(U) = §(U, §) — A(CT-U—1) (13)

The minimum solution satisfies the conditions [(0®(U))/éU] =0,i=1, 2,...,n. It leads to the
problem of solving a system of equations such that

AU, = C (14)
in matrix notation, where the global stiffness matrix

A
JUTAU+6°

is regarded as a constant matrix in each iteration and is updated from iteration to iteration with
the vector U obtained in the previous iteration. The above problem is treated in each iteration as
a linear system to be solved repeatedly with an inner and an outer iterative sequence.

A solution of the problem may be symbolically expressed as

A=5 (15)



1198 H. Huh et al. | International Journal of Solids and Structures 36 (1999) 1193—-1207
Us;=24""'C (16)
where A can be evaluated by the condition C*+U = 1 to obtain

1
‘T oaic (4

The outer iteration is associated with a decreasing sequence of 6. At each fixed value of J, an
inner iteration begins with a previously obtained vector U as its initial vector. The solution of (14)
in each inner iteration is used in a feedback loop to update A and /. The converged solution (U, 9)
and U; under a suitable stopping criterion terminates an inner iteration loop. Then, ¢ is reduced
for the outer iteration to start another inner iteration. During the inner and outer iterations, an
initial vector U is assumed only in the first inner iteration. From any initial vector U, the
subsequent iterations are locked in a certain convex hull defined by the data of the discrete problem
(11). Thus, in reality, only a few values of ¢ are needed to extrapolate to the limit, 6 — 0.

4. Numerical examples

The developed algorithm was demonstrated for its validity and versatility with various plane
stress problems in the early work by Huh and Yang (1991). In this section, the algorithm is to be
demonstrated with several plastic flow problems in the plane strain case and the axisymmetric
case. The finite dimensional approximation has been carried out by a finite element method
with the three-node linear triangular element or the four-node bilinear quadrilateral element.
Nevertheless the choice of the type of finite elements may depend on the nature of a problem, the
linear element was rendered satisfactory in present applications.

4.1. Plane strain indentation by a flat punch

The first application of the present methodology must be a test of its ability to reproduce a
known result. The plane indentation problem is selected as the bench mark for comparison since
itis one of the typical problems solved by the slip-line method (Prager and Hodge, 1951; Kachanov,
1971). Any solution of an indentation problem is immediately applicable, with only a change in
sign, to the tension of a notched bar superposing a uniform velocity to bring one end of the bar to
have a uniform velocity. The estimated yield-point load for a plane semi-infinite medium indented
by a smooth flat die is P = 2ka(2a+ ) where 2a is the width of the die. Since the load was obtained
from a lower bound formulation in terms of stress, it is a lower bound solution. A calculated dual
solution for the yield-point load with the present algorithm is P = 3.006242, which is obtained
after 20 iterations as a total sum of inner and outer iterations. The two upper and lower bound
solutions show the deviation of less than 1.3%, which can be satisfactory when it is counted in
that the numerical calculation approximates a semi-infinite medium as a finite medium with rough
finite element meshes and allows continuity in a velocity field. A velocity field obtained for this
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Fig. 1. Plastic flow in the indentation of a plane semi-infinite medium by a flat punch.

problem is shown in Fig. 1 with a schematic slip-line field. Figure 1 demonstrates the obtained
velocity field is almost the same as the velocity field by the slip-line method except the former is
continuous. It is a strong verification of the dual variational principle and the algorithm.

The present algorithm is readily applied to the constrained indentation problem which is an
open problem with the slip-line method. The calculated yield-point load is P = 3.393612 after 20
iterations. This load is slightly larger than the upper bound solution P = 2ka [2+n+(b/\/£)]
obtained with the velocity field drawn in Fig. 2. The deviation of two solutions is less than 0.5%
though. Figure 2 shows the calculated velocity field and a schematic kinematically admissible
velocity field. There seems a region with rigid body motion under the constrained boundary. It
follows that the direct application of this velocity field to construct a slip-line field still needs a
thorough study. The velocity field itself, however, provides good information for construction of
a possible slip-line field.

Figure 3 shows the velocity fields in backward extrusion with the large and small extrusion
ratios, respectively, as a modified problem of the indentation problem. The velocity fields explain
that the plastic flow spreads over the entire region with the small extrusion ratio while the plastic
flow is restricted within a part of the region with the large extrusion ratio. This tendency becomes
obvious when the depth of a medium becomes larger than the domain in calculation, which is in
good agreement with the result in Johnson and Kudo (1962).
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Fig. 2. Plastic flow in the constrained indentation of a plane semi-infinite medium by a flat punch.

4.2. Plane strain extrusion through a square die

The plane strain extrusion problem through a square die has been studied in great detail with
the slip-line method (Hill, 1950; Johnson and Kudo, 1962) and the upper bound method (Avitzur,
1968; Osakada and Niimi, 1975). The velocity field associated with the deformation region and
the dead metal region has been assumed in various ways and compared with the experimental
data. This procedure needed intuitive techniques inspired from deep theoretical backgrounds and
insights on the mechanics and mathematics. The present algorithm, on the other hand, offers the
velocity field under the constraints of the minimum dual functional and the smallest kinematically
admissible function space without any prior conjecture. The calculated extrusion load is plotted
with the variation of the extrusion ratio in Fig. 4, and compared with the slip-line solutions. The
figure shows there is a narrow gap between the slip-line solutions and the calculated ones. The gap
will be definitely narrower as the number of finite elements and iterations is increased.

Figure 5 shows the velocity fields for the extrusion ratio of 0.25, 0.5 and 0.75. The figures indicate
that the dead-metal region is formed with the small extrusion ratio and reduced with the larger
extrusion ratio. The figures also show there is only slight difference between the calculated velocity
fields and the slip-line fields considering that the former allows a continuous velocity field. With
the extrusion ratio of 0.75, there observed difference to some extent between the two velocity fields.
As a matter of fact, two slip-line solutions exist in this case, one with the dead-metal region and
the other without the dead-metal region. The obtained velocity field is an intermixture one and
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Fig. 3. Plastic flow in the backward extrusion with: (a) small extrusion ratio (reduction in area = 4/15); (b) large
extrusion ratio (reduction in area = 4/5).
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Fig. 4. Extrusion loads in the plane strain extrusion through a smooth square die with the variation of reduction area.

T

rather closer to the one without the dead metal region. This result is in good agreement with the
experimental result by Johnson and Kudo (1962).

4.3. Axisymmetric extrusion with work-hardening materials

In the previous two sections, the validity and versatility of the present algorithm is fully
demonstrated by comparing the obtained result with the analytical and experimental result. To
apply the present algorithm to real metal forming processes, however, the present methodology
has to be furnished with the treatment of friction between dies and materials, and the work-
hardening behavior of materials. The objective function in the dual formulation (8) can be restated
as

q(u) = o [p el dQ+mkfop Ju | AT (18)

by including the term related to the frictional dissipation with the constant friction factor m. As a
matter of fact, this objective function (18) can be derived from the weak equilibrium equation by
applying the proper boundary condition without any difficulties. In the above objective function,
the yield stress g, and the yield shear stress k can be replaced by current yield stresses as

Gy =G =F(W,) or H@) (19)

Then, the formulation can deal with not only the problem of a medium with different materials
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Fig. 5. Plastic flow in the plane strain extrusion through a smooth square die with the related schematic slip-line field:
(a) reduction in area = 0.25; (b) reduction in area = 0.5; (c) reduction in area = 0.75.
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Fig. 6. Schematic diagram for the effective stress—strain relation with discrete tracking of the current yield stress.

but the problem of a work-hardening medium as the aggregate of elements with different flow
stresses. The current yield stress can be obtained from a typical and simple stress—strain relation

G =a+bs" ora=cla+bs)" (20)

where a, b, and ¢ are constants for a given material. The problem can be solved incrementally step
by step by replacing the yield stress with the current yield stress at each step, as shown in Fig. 6.
In order to guarantee the current yield stress representative of each element at each step, the limit
solution procedure has to deal with another iteration to update the current yield stress until the
residual becomes zero.

The above idea from the conventional limit analyses makes it possible to simulate any three-
dimensional metal forming process with work-hardening materials. As an example, the present
algorithm is applied to an axisymmetric extrusion problem with a work-hardening material. The
analysis provides the extrusion load, and distributions of the effective strain rate and effective
strain from the velocity field at each deformation stage. In this paper, only a part of the results is
to be presented. A thorough study of this problem has been done by Huh and Lee (1993). Figure
7 shows the increase of the extrusion load with the advance of a ram as a material is work-hardened
with deformation. The calculated load concerns only the deformation load with die friction
neglecting the friction between a material and a container. This result is in good agreement with
the result by Lee et al. (1977). Plastic flow through a conical die in an extrusion process is depicted
in Fig. 8(a) and (b) for the initial state and the steady state. Although the difference in plastic flow
between two figures is hard to distinguish, the difference in the deformation region is easily
distinguished. Figure 9 illustrates the variation of the deformation region as the deformation
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Fig. 7. Variation of the extrusion load for various die friction in the axisymmetric extrusion through a conical die with
the die angle of 30°.

proceeds. It is noted that the deformation region moves backwards gradually during the defor-
mation until the steady state is reached. That is because the material near the outlet is work-

hardened more and more than the material near the inlet and the resistance against the deformation
increases.

5. Conclusions

A general algorithm for plastic flow analysis has been developed and successfully tested for
plane strain problems and axisymmetric problems. The algorithm can be readily applied to three-
dimensional problems with work-hardening materials. The algorithm is built on sound physical,
mathematical, and computational foundations. The duality theorem helps discern the direction
and rate of convergence when an iterative approach is applied to either the primal or the dual
formulation. The combined smoothing and successive approximation method homes in robustly
on a correct optimum solution.

The numerical examples confirm the validity and versatility of the present algorithm with the
results which are acceptable at a modest cost. Especially, the load and the velocity field for the
constrained indentation problem which is an open problem with the slip-line methods are obtained
without any prior conjecture as a demonstration of substitution for the slip-line method. An
axisymmetric extrusion problem with a work-hardening material is also analyzed with the idea
extended from the convectional limit analysis. The result of the extrusion load and the distribution
of the effective strain rate obtained from the corresponding velocity field is reasonable and in good
agreement with those in literature (Lee et al., 1977).
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Fig. 8. Plastic flow in the axisymmetric extrusion through a conical die with the die angle of 30°: (a) the initial state; (b)

the steady state.

Initial State : _ __

Steady State :

Fig. 9. Distributions of the equivalent strain rate in the axisymmetric extrusion through a conical die with the die angle

of 30° for the initial state and the steady state.
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